Interactive Formal Verification 8: Operational Semantics

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

Overview

- The operational semantics of programming languages can be given *inductively*.
 - Type checking
 - Expression evaluation
 - Command execution, including concurrency

Overview

- The operational semantics of programming languages can be given *inductively*.
 - Type checking
 - Expression evaluation
 - Command execution, including concurrency
- Properties of the semantics are frequently proved by induction.

Overview

- The operational semantics of programming languages can be given *inductively*.
 - Type checking
 - Expression evaluation
 - Command execution, including concurrency
- Properties of the semantics are frequently proved by induction.
- Running example: an abstract language with WHILE

Language Syntax

typedecl loc -- "an unspecified type of locations"

```
type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"
```

```
datatype
    com = SKIP
        | Assign loc aexp ("_ :== _ " 60)
        | Semi com com ("_; _" [60, 60] 10)
        | Cond bexp com com ("IF _ THEN _ ELSE _ " 60)
        | While bexp com ("WHILE _ DO _ " 60)
```

Language Syntax

typedecl loc -- "an unspecified type of locations"

 $\langle \mathbf{skip}, s \rangle \to s$

 $\langle \mathbf{skip}, s \rangle \to s$ $\langle x := a, s \rangle \to s[x := a s]$

 $\langle \mathbf{skip}, s \rangle \to s$ $\langle x := a, s \rangle \to s[x := a \ s]$

$$\frac{\langle c_0, s \rangle \to s'' \quad \langle c_1, s'' \rangle \to s'}{\langle c_0; c_1, s \rangle \to s'}$$

 $\langle \mathbf{skip}, s \rangle \to s \qquad \qquad \langle x := a, s \rangle \to s[x := a \ s]$

$$\frac{\langle c_0, s \rangle \to s'' \quad \langle c_1, s'' \rangle \to s'}{\langle c_0; c_1, s \rangle \to s'}$$

 $\frac{b \, s \quad \langle c_0, s \rangle \to s'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, s \rangle \to s'} \qquad \frac{\neg b \, s \quad \langle c_1, s \rangle \to s'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, s \rangle \to s'}$

 $\langle \mathbf{skip}, s \rangle \to s$ $\langle x := a, s \rangle \to s[x := a s]$

$$\frac{\langle c_0, s \rangle \to s'' \quad \langle c_1, s'' \rangle \to s'}{\langle c_0; c_1, s \rangle \to s'}$$

 $\frac{b \, s \quad \langle c_0, s \rangle \to s'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, s \rangle \to s'} \qquad \frac{\neg b \, s \quad \langle c_1, s \rangle \to s'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, s \rangle \to s'}$

 $\frac{\neg b \, s}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, s \rangle \to s} \qquad \frac{b \, s \quad \langle c, s \rangle \to s'' \quad \langle \mathbf{while} \ b \ \mathbf{do} \ c, s'' \rangle \to s'}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, s \rangle \to s'}$

Formalised Language Semantics

000	Com.thy	\bigcirc
🗴 00 🖸	▼ ▶ ¥ H A A 0 Ø	
<pre>text {* The inductive evalc :: where</pre>	e big-step execution relation @{text evalc} is defined inductively *} "[com,state,state] ⇒ bool" ("<_,_)/ ~ _" [0,0,60] 60)	0
Skip: Assign:	"⟨SKIP,s⟩ ~ s" "⟨x :== a,s⟩ ~ s(x := a s)"	
I Semi:	$"\langle c0,s\rangle \rightsquigarrow s'' \implies \langle c1,s''\rangle \rightsquigarrow s' \implies \langle c0; c1, s\rangle \rightsquigarrow s'"$	U
IfTrue: IfFalse:	"b s \Rightarrow $\langle c0,s \rangle \sim s' \Rightarrow \langle IF b THEN c0 ELSE c1, s \rangle \sim s'''$ " $\neg b s \Rightarrow \langle c1,s \rangle \sim s' \Rightarrow \langle IF b THEN c0 ELSE c1, s \rangle \sim s'''$	
WhileFals WhileTrue	se: "¬b s ⇒ ⟨WHILE b DO c,s⟩ ~ s" e: "b s ⇒ ⟨c,s⟩ ~ s'' ⇒ ⟨WHILE b DO c, s''⟩ ~ s' ⇒ ⟨WHILE b DO c, s⟩ ~ s'"	
lemmas eva	<pre>lc.intros [intro] "use those rules in automatic proofs"</pre>	
-u-: Co	m.thv 17% 124 (Isar Utoks Abbrev: Scripting)) - -
Wrote /Use	rs/lp15/Dropbox/ACS/8 - Operational Semantics/Com.thy	1.

Formalised Language Semantics

an inductive predicate 000 \bigcirc $\infty \infty \mathbf{x} \mathbf{A} \mathbf{P} \mathbf{Y} \mathbf{M}$ with special syntax text {* The big-step execution relation @{text evalc} is defined inductively *} inductive evalc :: "[com, state, state] \Rightarrow bool" ("(_,_)/ ~ _" [0,0,60] 60) where Skip: "(SKIP.s) ~ s" I Assign: " $\langle x :== a, s \rangle \sim s(x := a s)$ " I Semi: $\langle c0, s \rangle \sim s'' \Rightarrow \langle c1, s'' \rangle \sim s' \Rightarrow \langle c0; c1, s \rangle \sim s''$ | IfTrue: "b s \Rightarrow $\langle c0, s \rangle \sim s' \Rightarrow \langle IF b THEN c0 ELSE c1, s \rangle \sim s'$ " I IfFalse: " $\neg b \ s \implies \langle c1, s \rangle \prec s' \implies \langle IF \ b \ THEN \ c0 \ ELSE \ c1, \ s \rangle \prec s'$ " I WhileFalse: " $\neg b \ s \implies \langle WHILE \ b \ DO \ c,s \rangle \sim s$ " I WhileTrue: "b s \Rightarrow (c,s) \sim s'' \Rightarrow (WHILE b D0 c, s'') \sim s' \Rightarrow (WHILE b DO c, s) \sim s'" lemmas evalc.intros [intro] -- "use those rules in automatic proofs" -u-:--- Com.thy 17% L24 (Isar Utoks Abbrev; Scripting)-------Wrote /Users/lp15/Dropbox/ACS/8 - Operational Semantics/Com.thy

Formalised Language Semantics

an inductive predicate 000 $\infty \infty \mathbf{x} \mathbf{A} \mathbf{P} \mathbf{Y} \mathbf{M}$ with special syntax text {* The big-step execution relation @{text evalc} is defined inductively *} inductive evalc :: "[com, state, state] \Rightarrow bool" ("(_,_)/ ~ _" [0,0,60] 60) where Skip: "(SKIP.s) ~ s" I Assign: " $\langle x :== a, s \rangle \sim s(x := a s)$ " I Semi: $\langle c0, s \rangle \sim s'' \Rightarrow \langle c1, s'' \rangle \sim s' \Rightarrow \langle c0; c1, s \rangle \sim s''$ | IfTrue: "b s \Rightarrow $\langle c0, s \rangle \sim s' \Rightarrow \langle IF b THEN c0 ELSE c1, s \rangle \sim s'$ " I IfFalse: " $\neg b \ s \implies \langle c1, s \rangle \prec s' \implies \langle IF \ b \ THEN \ c0 \ ELSE \ c1, \ s \rangle \prec s'$ " I WhileFalse: " $\neg b \ s \implies \langle WHILE \ b \ DO \ c, s \rangle \sim s$ " I WhileTrue: "b s \Rightarrow (c,s) \sim s'' \Rightarrow (WHILE b D0 c, s'') \sim s' \Rightarrow (WHILE b DO c, s) \sim s'" lemmas evalc.intros [intro] -- "use those rules in automatic proofs" declare as introduction rules for auto and blast -u-:--- Co ev; Scripting)-----operational semantics/Com.thy Wrote /Use a hund

• When $\langle skip, s \rangle \rightarrow s'$ we know s = s'

- When $\langle skip, s \rangle \rightarrow s'$ we know s = s'
- When $\langle \mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1, s \rangle \rightarrow s'$ we know

•
$$b$$
 and $\langle c_0, s \rangle \rightarrow s'$, or...

•
$$\neg b$$
 and $\langle c_1, s \rangle \rightarrow s'$

- When $\langle skip, s \rangle \rightarrow s'$ we know s = s'
- When $\langle \mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1, s \rangle \rightarrow s'$ we know
 - b and $\langle c_0, s \rangle \rightarrow s'$, or...
 - $\neg b$ and $\langle c_1, s \rangle \rightarrow s'$
- This sort of case analysis is easy in Isabelle.

000	Com.thy	\bigcirc
00 00 🔺 ┥	🕨 🗶 🛏 🖀 🔎 🚯 🐖 🖨 🤣 🚏	
		ĥ
<pre>inductive_case inductive_case inductive_case inductive_case inductive_case</pre>	es skipE [elim]: "(SKIP,s) ~ s'" es semiE [elim]: "(c0; c1, s) ~ s'" es assignE [elim]: "(x :== a,s) ~ s'" es ifE [elim]: "(IF b THEN c0 ELSE c1, s) ~ s'" es whileE [elim]: "(WHILE b D0 c,s) ~ s'"	0
-u-: Com.th	hv 53% L48 (Isar Utoks Abbrev: Scripting)	4
[⟨SKIP,?s⟩ ~ ?	$s'; s' = s \Rightarrow P \Rightarrow P$	n
-u-:%%- *respo	onse* All L1 (Isar Messages Utoks Abbrev;)	
		11.

Rule Inversion Again

000	Com.thy	\bigcirc
∞ ∞ ∡ ◄ ►	🗴 🛏 🖀 🔎 🕕 🕼 🗢 🗢 🚏	
<pre>inductive_cases sk inductive_cases se inductive_cases as inductive_cases if inductive_cases wh</pre>	ipE [elim]: "⟨SKIP,s⟩ ~ s'" miE [elim]: "⟨c0; c1, s⟩ ~ s'" signE [elim]: "⟨x :== a,s⟩ ~ s'" E [elim]: "⟨IF b THEN c0 ELSE c1, s⟩ ~ s'" ileE [elim]: "⟨WHILE b D0 c,s⟩ ~ s'"	0
-u-: Com.thv	53% L49 (Isar Utoks Abbrev: Scripting)	4
[c0.0; ?c1.0,?s	<pre>~ ?s'; \s''. [(?c0.0,?s) ~ s''; (?c1.0,s'') ~ ?s'] ⇒</pre>	?P]
⇒ ?P		
-u-:%%- *response*	All L2 (Isar Messages Utoks Abbrev;)	

Rule Inversion Again

 $\langle \mathbf{while \ true \ do } c, s \rangle \not\rightarrow s'$

 $\langle \mathbf{while \ true \ do \ } c, s \rangle \not\rightarrow s'$

This formula is not provable by induction!

 $\langle \mathbf{while \ true \ do \ } c, s \rangle \not\rightarrow s'$

This formula is not provable by induction!

$$\langle c, s \rangle \rightarrow s' \Longrightarrow \forall c'. c \neq ($$
while true do $c')$

 $\langle \mathbf{while \ true \ do \ } c, s \rangle \not\rightarrow s'$

This formula is not provable by induction!

$$\langle c, s \rangle \rightarrow s' \Rightarrow \forall c'. c \neq (\text{while true do } c')$$

Isabel	le Proof General: Com.thy 👄	
😡 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🐧) 🖅 🤤 🤣 🚏	
lemma while_never: " $\langle c, s \rangle \sim u \Longrightarrow$	c ≠ WHILE (λs. True) DO c1"	
apply (induct rule: evalc.induct)		
• apply auto	(Tana III also Alabaras Conintina)	J
-u-:**- Com.tny 51% L60	(Isar Utoks Abbrev; Scripting)	-
goal (7 subgoals):	-1	5
1. //s. SKIP \neq WHILE As. True DU		l
2. $/(X \cap S, X) :== \cap \neq WHILE AS$.		l
5. $/(c_0 s) \sim s'' \cdot c_0 \neq WHTE s$	r = True DO (1) (cla cli) a cli	I
(10, 5) = 3, (07) miller		I
\Rightarrow (c0: c1a) \neq WHILE is T	rue DO c1	l
4. Ab s $c0$ s' $c1a$		l
$[b s: (c0, s) \sim s': c0 \neq WH]$	$[LE \lambda s, True DO c1]$	l
\Rightarrow IF b THEN c0 ELSE c1a \neq	\neq WHILE λ s. True DO c1	l
5. Ab s c1a s' c0.		l
[¬ b s; ⟨c1a,s⟩ ~ s'; c1a ヲ	≤ WHILE λs. True DO c1	l
\Rightarrow IF b THEN c0 ELSE c1a \neq	\neq WHILE λs. True DO c1	l
6. $\land b \ s \ c. \neg b \ s \implies WHILE \ b \ DO$	$c \neq WHILE \lambda s. True DO c1$	l
7. ∧b s c s'' s'.		l
[b s; <c,s> ~ s''; c ≠ WHIL</c,s>	_E λs. True DO c1; (WHILE b DO c,s'') ~ s';	I
WHILE b DO c \neq WHILE λ s.	True DO c1	J
\implies WHILE b DO c \neq WHILE λ s	. True DO c1	
		1
-u-:%%- *goals* 2% L4	(Isar Proofstate Utoks Abbrev;)	-
		1.

7 subgoals, one for each $\bigcirc \bigcirc \bigcirc \bigcirc$ Isabelle Proof General: Com.thy rule of the definition 😡 😳 🔺 🔺 🕨 🗶 🛏 🖀 🔎 🕦 🐖 🌐 🤧 lemma while_never: "(c, s) ~ u \Rightarrow c \neq WHILE (λ s. True) DO c1" apply (induct rule: evalc.induct) apply auto 51% L60 -u-:**- Com. thy (Isar Utoks Abbrev; Scripting)-----goal (7 subgoals): 1. Λ s. SKIP \neq WHILE λ s. True DO c1 2. $\Lambda x a s. x :== a \neq WHILE \lambda s. True DO c1$ 3. ∧c0 s s'' c1a s'. $[(c0,s) \sim s''; c0 \neq WHILE \lambda s. True D0 c1; (c1a,s'') \sim s';$ c1a \neq WHILE λ s. True DO c1 \Rightarrow (c0; c1a) \neq WHILE λ s. True D0 c1 4. ∧b s c0 s' c1a. [b s; $\langle c0, s \rangle \sim s'$; $c0 \neq WHILE \lambda s$. True DO c1] \Rightarrow IF b THEN c0 ELSE c1a \neq WHILE λ s. True D0 c1 5. ∧b s c1a s' c0. $[\neg b s; (c1a,s) \sim s'; c1a \neq WHILE \lambda s. True DO c1]$ \Rightarrow IF b THEN c0 ELSE c1a \neq WHILE λ s. True D0 c1 6. Ab s c. \neg b s \implies WHILE b DO c \neq WHILE λ s. True DO c1 7. Ab s c s'' s'. [b s; $(c,s) \sim s''$; $c \neq WHILE \lambda s$. True DO c1; $(WHILE b DO c,s'') \sim s'$; WHILE b DO c \neq WHILE λ s. True DO c1 \Rightarrow WHILE b DO c \neq WHILE λ s. True DO c1 (Isar Proofstate Utoks Abbrev;)-------u-:%%- ***aoals*** 2% L4

Isabelle Proof General: Com.thy	7 subgoals, one for each
	rule of the definition
lemma while_never: " $\langle c, s \rangle \sim u \Rightarrow c \neq WHILE (\lambda s. True) DO$	Most are trivial
apply (induct rule: evalc. induct)	r iost are triviai,
-u-:**- Com.thy 51% L60 (Isar Utoks Abbrev; Scri	pting by distinctness
goal (7 subgoals);	
1. Λ s. SKIP \neq WHILE λ s. True DO c1	
2. $\Lambda x a s. x :== a \neq WHILE \lambda s. True DO c1$	
3. ∧c0 s s'' c1a s'.	
$[\langle c0, s \rangle \sim s''; c0 \neq WHILE \lambda s. True D0 c1; \langle c1a, s'' \rangle$	~ s';
$c_{1a} \neq WHILE \lambda s. rue DO c_{1} $	
\Rightarrow (c0; c1a) \neq WHILE AS. True DU CI	
4. $(D \le CU \le CI \alpha$. The st $(CQ \le C) = 1 = C(Q \ne WHT E + C = True DQ = 1)$	
\implies TE b THEN c0 ELSE c1a \neq WHILE is True D0 c1	
5. Ab s cla s' c0.	
$[\neg b s; (c1a,s) \sim s'; c1a \neq WHILE \lambda s, True DO c1]$	
\Rightarrow IF b THEN c0 ELSE c1a \neq WHILE λ s. True D0 c1	
6. Ab s c. \neg b s \implies WHILE b DO c \neq WHILE λ s. True DO c1	
7. Abscs''s'.	
[b s; $(c,s) \sim s''$; c ≠ WHILE λs . True DO c1; \langle WHILE	b D0 c,s''〉~ s';
WHILE b DO c \neq WHILE λ s. True DO c1	
\implies WHILE b DO c \neq WHILE λ s. True DO c1	
	Y
-u-:%%- *goals* 2% L4 (Isar Proofstate Utoks A	bbrev;)

000	Isabelle Proof General: Com.thy	7 subgoals, c	one for each
	-1 🖀 🔎 🗊 🐷 🖨 😫	rule of the	e definition
<pre>lemma while_never: "<c (induct="" apply="" ev<="" pre="" rule:=""></c></pre>	, s) $\sim u \implies c \neq WHILE$ ($\lambda s. True$) valc.induct)	Most a	re trivial.
<pre>• apply auto -u-:**- Com.thy</pre>	51% L60 (Isar Utoks Abbrev; S	cripting by dist	inctness
<pre>goal (7 subgoals); 1. \(\Lambda\)s. SKIP ≠ WHILE 2. \(\Lambda\)x a s. x :== a 3. \(\Lambda\)c0 s s'' c1a s'.</pre>	λs. True DO c1 ≠ WHILE $λs.$ True DO c1		
$\begin{array}{c} (c0,s) \sim s^{-1};\\ c1a \neq WHILE \lambda s\\ \Longrightarrow (c0; c1a) \neq \\ 4. \ Ab \ s \ c0 \ s' \ c1a. \end{array}$	WHILE λs . True DO CI; (Cld, s) WHILE λs . True DO c1	· · · · · · · · · · · · · · · · · · ·	
[b s; $(c0,s) \sim T$ ⇒ IF b THEN c 5. $Ab s c1a s' c0.$	s'; $c0 \neq WHILE \lambda s$. True DO $c1$ 0 ELSE $c1a \neq WHILE \lambda s$. True DO $c1$		
$[\neg b s; (c1a,s) \\ \Rightarrow IF b THEN c \\ 6. \land b s c. \neg b s \Rightarrow \\ 7. \land b s c s'' s'.$	\neg s'; c1a ≠ WHILE λs. True DO c1 0 ELSE c1a ≠ WHILE λs. True DO c1 WHILE b DO c ≠ WHILE λs. True DO	trivial for ar	nother reason
[b s; ⟨c,s⟩ ~ s WHILE b DO c ≠ ⇒ WHILE b DO	''; c ≠ WHILE λs. True DO c1; ⟨WH] é WHILE λs. True DO c1] c ≠ WHILE λs. True DO c1	ILE b DO c,s''〉~ s';	
-u-:%%- *goals*	2% L4 (Isar Proofstate Utok	ks Abbrev;)	

Done!

$\odot \odot \odot$	Isabel	le Proof General: Com.thy	\bigcirc
∞ ∞ ∡ ◄	🕨 🗶 🛏 🖀 🔎 🚺) 🕼 🤤 🤣 🚏	
<pre>lemma while_ne apply (induct apply auto</pre>	ever: "⟨c, s⟩ ~ u ⇒ rule: evalc.induct)	$c \neq WHILE (\lambda s. True) DO c1$	
-u-:**- Com.th	ny 51% L59	(Isar Utoks Abbrev; Script	ing)
proof (prove):	step 2		
goal: No subgoals!			
-u-:%%- *goa ls	s* Top L1	(Isar Proofstate Utoks Abb	rev;)
			14

Determinacy

$$\frac{\langle c, s \rangle \to t \qquad \langle c, s \rangle \to u}{t = u}$$

If a command is executed in a given state, and it terminates, then this final state is *unique*.

Determinacy in Isabelle

 \odot \bigcirc \bigcirc Com.thy 00 00 🔳 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏 theorem com_det: " $(c,s) \rightarrow t \implies (c,s) \rightarrow u \implies u = t$ " apply (induct arbitrary: u rule: evalc.induct) apply blast+ -u-:**- Com.thy 60% L62 (Isar Utoks Abbrev; Scripting)------1. \land s u. \langle SKIP,s $\rangle \sim u \implies u = s$ 2. $(x = a, s) \rightarrow u \Rightarrow u = s(x = a, s)$ 3. ∧c0 s s'' c1 s' u. $[\langle c0, s \rangle \neg s''; \land u. \langle c0, s \rangle \neg u \implies u = s''; \langle c1, s'' \rangle \neg s';$ $\Lambda u. \langle c1, s'' \rangle \rightarrow u \Rightarrow u = s'; \langle c0; c1, s \rangle \rightarrow u$ $\Rightarrow \mu = s'$ 4. Ab s c0 s' c1 u. [b s; $\langle c0, s \rangle \sim s'$; Λu . $\langle c0, s \rangle \sim u \implies u = s'$; (IF b THEN c0 ELSE c1,s) ~ u] $\Rightarrow u = s'$ 5. Ab s c1 s' c0 u. $[\neg b s; (c1,s) \sim s'; \land u. (c1,s) \sim u \implies u = s';$ (IF b THEN c0 ELSE c1.s) ~ u] $\Rightarrow \mu = s'$ 6. $\land b \ s \ c \ u$. $[\neg b \ s; \langle WHILE \ b \ DO \ c, s \rangle \sim u] \implies u = s$ 7. ∧b s c s'' s' u. [b s; $(c,s) \sim s''$; $(u, (c,s) \sim u \implies u = s''; (WHILE b DO c,s'') \sim s';$ $\Lambda u. \langle WHILE \ b \ DO \ c,s'' \rangle \sim u \implies u = s'; \langle WHILE \ b \ DO \ c,s \rangle \sim u$ \Rightarrow u = s' -u-:%%- *goals* 3% L5 (Isar Proofstate Utoks Abbrev;)------

Determinacy in Isabelle

allow the other state to vary $\odot \bigcirc \bigcirc$ Com.thy 00 00 🔳 🔺 🕨 🗶 🖂 🕌 🔎 🕥 00 theorem com_det: " $(c,s) \rightarrow t \Rightarrow (c,s) \rightarrow u \Rightarrow u = t$ " apply (induct arbitrary: u rule: evalc.induct) apply blast+ -u-:**- Com.thy (Isar Utoks Abbrev; Scripting)------60% L62 1. \land s u. \langle SKIP,s $\rangle \sim u \implies u = s$ 2. $(x = a, s) \rightarrow u \Rightarrow u = s(x = a, s)$ 3. ∧c0 s s'' c1 s' u. $[\langle c0, s \rangle \neg s''; \land u. \langle c0, s \rangle \neg u \implies u = s''; \langle c1, s'' \rangle \neg s';$ $\Lambda u. \langle c1, s'' \rangle \sim u \implies u = s'; \langle c0; c1, s \rangle \sim u$ $\Rightarrow \mu = s'$ 4. Ab s c0 s' c1 u. [b s; $\langle c0, s \rangle \sim s'$; Λu . $\langle c0, s \rangle \sim u \implies u = s'$; (IF b THEN c0 ELSE c1,s) ~ u] $\Rightarrow u = s'$ 5. ∧b s c1 s' c0 u. $[\neg b s; (c1,s) \sim s'; \land u. (c1,s) \sim u \implies u = s';$ (IF b THEN c0 ELSE c1.s) ~ u] $\Rightarrow \mu = s'$ 6. $\land b \ s \ c \ u$. $[\neg b \ s; \langle WHILE \ b \ DO \ c, s \rangle \sim u] \implies u = s$ 7. ∧b s c s'' s' u. [b s; $(c,s) \sim s''$; $(u, (c,s) \sim u \implies u = s''; (WHILE b DO c,s'') \sim s';$ $\Lambda u. \langle WHILE \ b \ DO \ c,s'' \rangle \sim u \implies u = s'; \langle WHILE \ b \ DO \ c,s \rangle \sim u$ \Rightarrow u = s' -u-:%%- ***goals*** 3% L5 (Isar Proofstate Utoks Abbrev;)------

Determinacy in Isabelle

Com.thy allow the other state to value	iry
theorem com_det: " $(c,s) \rightarrow t \rightarrow (c,s) \rightarrow u \rightarrow u = t$ " apply (induct arbitrary: u rule: evalc.induct) trivial by rule inversion	n
apply blast+	
-u-:**- Com.tny 60% L62 (Ison Otoks Abbrev; Scripting)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3. $Ac0 \le s' \le c1 \le u$.	
$[\langle c0, s \rangle \prec s''; \Lambda u. \langle c0, s \rangle \prec u \Longrightarrow u = s''; \langle c1, s'' \rangle \prec s';$	
$\Lambda u. \langle c1, s'' \rangle \sim u \implies u = s'; \langle c0; c1, s \rangle \sim u$	
\Rightarrow u = s'	
4. ∧b s c0 s' c1 u.	
$[b s; (c0,s) \rightarrow s'; \land u. (c0,s) \rightarrow u \Rightarrow u = s';$	
<pre>(IF b THEN c0 ELSE c1,s) ~ u]</pre>	
\Rightarrow u = s'	
5. $/\sqrt{D} \le CI \le CO U$.	
$\langle TE \ b \ THEN \ c0 \ ELSE \ c1 \ s \rangle \sim u^{-1}$	
\Rightarrow u = s'	
6. Ab s c u. $[\neg b s; \langle WHILE b DO c, s \rangle \sim u] \implies u = s$	
7. Abscs''s'u.	
[b s; (c,s) ~ s''; Au . (c,s) ~ u ⇒ u = s''; (WHILE b DO c,s'') ~ s';	
$\Lambda u. \langle WHILE \ b \ DO \ c,s'' \rangle \sim u \implies u = s'; \langle WHILE \ b \ DO \ c,s \rangle \sim u]$	
\Rightarrow u = s'	
-u-:%%- *goals* 3% L5 (Isar Proofstate Utoks Abbrev;)	

Proved by Rule Inversion

000		Com.thy			\bigcirc
∞ ∞ エ ◀ ► 포 ►	4 🖀 🔎 🧃) 🕼 🤤 😌 🕅			
theorem com_det: "(c,s) apply (induct arbitrar apply blast+	v ~ t ⇒ ⟨c y: u rule: v	,s〉 ~ u ⇒ u = t" evalc.induct)			
-u-: Com.thy	65% L62	(Isar Utoks Abbrev;	Scripting)	
proof (prove): step 2					n
goal: No subgoals!					
-u-:%%- *goals*	Top L1	(Isar Proofstate Uto	oks Abbrev	;)	Y
					11.

Proved by Rule Inversion


```
000
                                Isabelle Proof General: Com.thy
                                                                                        \bigcirc
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
subsection {*Equivalence of commands*}
text{*Two commands are equivalent if they allow the same transitions.*}
definition
  equiv_c :: "com \Rightarrow com \Rightarrow bool" ("_ ~ _")
where
  "(c \sim c') = (\forall s s'. (\langle c, s \rangle \sim s') = (\langle c', s \rangle \sim s'))"
-u-:--- Com.thy
                          57% L77
                                      (Isar Utoks Abbrev; Scripting )------
Wrote /Users/lp15/Dropbox/ACS/8 - Operational Semantics/Com.thy
```


More Semantic Equivalence!

```
\bigcirc \bigcirc \bigcirc
                              Isabelle Proof General: Com.thy
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma equiv_semi:
 "c1 ~ c1' \Rightarrow c2 ~ c2' \Rightarrow (c1; c2) ~ (c1'; c2')"
by (force simp add: equiv_c_def)
lemma equiv_if:
 "c1 ~ c1' \Rightarrow c2 ~ c2' \Rightarrow (IF b THEN c1 ELSE c2) ~ (IF b THEN c1' ELSE c2')"
by (force simp add: equiv_c_def)
                        70% L102
-u-:**- Com.thy
                                   (Isar Utoks Abbrev; Scripting )-----
lemma
  equiv_if:
    [?c1.0 ~ ?c1'; ?c2.0 ~ ?c2']
    \Rightarrow IF ?b THEN ?c1.0 ELSE ?c2.0 ~ IF ?b THEN ?c1' ELSE ?c2'
              commands built from
            equivalent commands are
                      equivalent
-u-:%%- *response*
                       All L4
                                   (Isar Messages Utoks Abbrev;)------
```

More Semantic Equivalence!

And More!!

$\odot \odot \odot$	Isabe	lle Proof General: Com.thy
တ္ က 🗶 🚽	i 🕨 🗶 🖂 🍈 🧔 🌔) 🕼 🤤 🤣 🚏
lemma unfold "(WHILE b by (force si lemma triv_i "(IF b THE by (auto sim	_while: DO c) ~ (IF b THEN c; mp add: equiv_c_def) f: N c ELSE c) ~ c" p add: equiv_c_def)	WHILE b DO c ELSE SKIP)"
	1	(Tana III also Alabaras Canin Line)
lemma trivi	tny 77% L104 f. TE 2b THEN 2c ELSE	(Isar Utoks Abbrev; Scripting)
-u-:%%- *res	ponse* All L1	(Isar Messages Utoks Abbrev;)
Auto-saving.	done	

$$\frac{\langle c, s \rangle \to s' \iff \langle c', s \rangle \to s'}{c \sim c'} \quad s \text{ and } s' \text{ not free.}.$$

000 Isabelle Proof General: Com.thy 🎿 🕦 🕼 🥌 💭 🕅 00 00 **T** lemma equivI [intro!]: "(\land s s'. \langle c, s \rangle \neg s' = \langle c', s \rangle \neg s') \Rightarrow c \sim c'" by (auto simp add: equiv_c_def) lemma commute_if: "(IF b1 THEN (IF b2 THEN c11 ELSE c12) ELSE c2) (IF b2 THEN (IF b1 THEN c11 ELSE c2) ELSE (IF b1 THEN c12 ELSE c2))" by blast 87% L129 (Isar Utoks Abbrev; Scripting)-------u-:-- Com.thy lemma commute_if: IF ?b1.0 THEN IF ?b2.0 THEN ?c11.0 ELSE ?c12.0 ELSE ?c2.0 ~ IF ?b2.0 THEN I F ?b1.0 THEN ?c11.0 ELSE ?c2.0 ELSE IF ?b1.0 THEN ?c12.0 ELSE ?c2.0

$$\frac{\langle c, s \rangle \to s' \iff \langle c', s \rangle \to s'}{c \sim c'} \quad s \text{ and } s' \text{ not free.} .$$

$$\frac{\langle c, s \rangle \to s' \iff \langle c', s \rangle \to s'}{c \sim c'} \quad s \text{ and } s' \text{ not free.}.$$

$$\frac{\langle c, s \rangle \to s' \iff \langle c', s \rangle \to s'}{c \sim c'} \quad s \text{ and } s' \text{ not free.}.$$

• Small-step semantics is treated similarly.

- Small-step semantics is treated similarly.
- Variable binding is crucial in larger examples, and should be formalised using the *nominal package*.
 - choosing a fresh variable
 - renaming bound variables consistently

- Small-step semantics is treated similarly.
- Variable binding is crucial in larger examples, and should be formalised using the *nominal package*.
 - choosing a fresh variable
 - renaming bound variables consistently
- Serious proofs will be complex and difficult!